Heart Rate Variability Biofeedback (HRVB) empowers clients to self-regulate emotions. HRVB professionals use quantitative and graphic analysis of heart rate (HR) to help clients understand their physiological status and the relationship between autonomic function and well-being.

This presentation will use actual pre-post HRV data from patients with PTSD and chronic pain to illustrate how acquisition of self-regulation through HRVB affects HR patterns and screen displays. ‘Coherence’ is the term used to refer to the 0.1 Hz HRV peak, which indicates optimum HRV and results from synchronization of respiration, HR, baroreflex and blood pressure. Methods and a new approach to quantifying Coherence from a tachygram will be explained. (NBCC, APA CE Hours 1.5-intermediate)

"The more I know, the more I realize how little I know" — Socrates (b. 399 BCE)
"The more you know, the more you know you don’t know." — Aristotle (b. 384 BCE)
Disclaimer and Disclosure

- Neuropsychologist, interest in PTSD and cognitive psychophysiology
- Not expert in cardiology, physiology, medication, or pain
- No conflict of interest, affiliations, or product endorsement
- Slides are original, available on internet, or acknowledged
- Not copyrighted but please acknowledge
- Some portions presented previously
- Models are didactic and heuristic
 - Correct only as far as they go
 - Referenced and consistent with current scientific literature
 - Corrections, revisions, expansions, updates are welcomed
 - Sketchy, incomplete, simplified, and not elaborated in context
 - Not writing medical cardiovascular physiology textbook or research proposal

Materials that are included in this presentation may include interventions and modalities that are beyond the authorized practice of mental health professionals. As a licensed professional, you are responsible for reviewing the scope of practice, including activities that are defined in law as beyond the boundaries of practice in accordance with and in compliance with your professions standards.

Actual Sample of Interbeat Intervals (IBI)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>705</td>
<td>716</td>
<td>754</td>
<td>787</td>
<td>787</td>
<td>762</td>
<td>748</td>
<td>723</td>
</tr>
<tr>
<td>779</td>
<td>790</td>
<td>800</td>
<td>785</td>
<td>772</td>
<td>764</td>
<td>749</td>
<td>726</td>
</tr>
<tr>
<td>754</td>
<td>721</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tachygram

A tachygram is a graph of heart rate (HR), either as inter-beat interval (IBI) or as instantaneous HR (BPM), over a continuous time period. The illustrations above are IBI in msecs measured as RR.
10/19/2018

72 BPM, Max-Min 20 vs 30
1 cycle/10 sec = 6 cycles/min
12 beats/cycle

60 BPM, Max-Min 30
1 cycle/10 sec = 6 cycles/min
10 beats/cycle

Same period (=10 secs)

<table>
<thead>
<tr>
<th>BPM</th>
<th>IBI (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>72</td>
<td>1045</td>
</tr>
<tr>
<td>70</td>
<td>1157</td>
</tr>
<tr>
<td>68</td>
<td>1200</td>
</tr>
</tbody>
</table>

BPM

- **Mean** = 65 bpm
- **Amplitude** = 15 bpm (50-80 bpm)
- **Max-Min (Peak to Trough)** = 30

Heart Rate Variability (HRV)

- **IBI** = 975 + 225 * COS(t * PI)

Scatter Plots

- Sine Wave
- Random
- Constant

Graphs

- LF
- HF

Equations

\[IBI = 975 + 225 \times \cos(t \times \pi) \]
Beats per minute (instantaneous heart rate) mathematically derived from a sine/cosine function.

In the illustration above there are 10 beats in 10 seconds (avg BPM=60); note however that the beats are not evenly spaced 1 second apart.

The Fourier Transform will transform any sinusoidal wave form (e.g. time series) into a frequency spectrum. The transformed frequency spectrum is quantified and analyzed in terms of 'power' or area under the curve, across a range of frequencies. Power is directly related to variance of the untransformed time series.
Idealized HRV power expected across frequency spectrum due to parasympathetic and sympathetic branches of the ANS. This hypothesized proposition has not been fully tested and validated.
60 BPM, Max-Min 30
1 cycle/10 secs, 10 beats/cycle
6 cycles (1 minute)

Kubios v. 2.0

Idealized HRV parameters - 1 min recording

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean HR</td>
<td>60.0</td>
</tr>
<tr>
<td>Max-Min</td>
<td>30.0</td>
</tr>
<tr>
<td>SDNN (ms)</td>
<td>187.1</td>
</tr>
<tr>
<td>RMSSD (ms)</td>
<td>130.6</td>
</tr>
<tr>
<td>VLF power (ms)²</td>
<td>0</td>
</tr>
<tr>
<td>LF power (ms)²</td>
<td>35379</td>
</tr>
<tr>
<td>HF power (ms)²</td>
<td>77</td>
</tr>
</tbody>
</table>

What parameters would Mean HR 72, Max-Min 24 (i.e. 72/24=3.0) have?

Sinusoidal Random Constant

<table>
<thead>
<tr>
<th>Mean RR (ms)</th>
<th>1013.9</th>
<th>1013.9</th>
<th>1013.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean HR (b/min)</td>
<td>60.0</td>
<td>59.9</td>
<td>60.0</td>
</tr>
</tbody>
</table>
Physiological Bases of HRV

I. **Respiratory Sinus Arrhythmia (RSA)**
 - Abdominothoracic Pump, Respiratory Pump, Cardio-respiratory Coupling, Cardiopulmonary Reflex, Lung-heart Pump
 - Results from interactions between respiration (rate, depth, volume) and
 - Oscillations in cardiac output
 - Vagal parasympathetic tone
 - Occurs at normal respiration rate
 - 0.15-0.4 Hz or 9-14 BrPM
 - May be measured as either instantaneous HR or IBI
 - Max-min (‘peak to trough’) over a single respiratory cycle or averaged over many respiratory cycles
 - HRV indices
 - A higher resting vagal tone may be adaptive
 - Energy reserve capacity for active states

II. **Resonant Frequency Breathing (RFB)**
 - Occurs in LF, around 0.1 Hz or 6 BrPM
 - Baroreceptor reflex (BR)
 - Interrelations of respiration, HR, BR, BP, and vasomotor tone (VT)
 - ‘Coherence’

HRV parameters - 1 min recording

<table>
<thead>
<tr>
<th></th>
<th>Sinusoidal</th>
<th>Random</th>
<th>Constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean HR (ms)</td>
<td>60.0</td>
<td>59.9</td>
<td>60.0</td>
</tr>
<tr>
<td>Max-Min HR (ms)</td>
<td>20.0</td>
<td>20.0</td>
<td>20.0</td>
</tr>
<tr>
<td>HR/(Max-Min)</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>SDNN (ms)</td>
<td>118.9</td>
<td>82.9</td>
<td>0.0</td>
</tr>
<tr>
<td>RMSSD (ms)</td>
<td>83.7</td>
<td>126.6</td>
<td>0.0</td>
</tr>
<tr>
<td>VLF peak (Hz)</td>
<td>.03</td>
<td>.04</td>
<td>.04</td>
</tr>
<tr>
<td>VLF power (ms)²</td>
<td>10.1</td>
<td>100.9</td>
<td>0.0</td>
</tr>
<tr>
<td>LF peak (Hz)</td>
<td>0.10</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>LF power (ms)</td>
<td>1481.0</td>
<td>603.9</td>
<td>0.0</td>
</tr>
<tr>
<td>HF peak (Hz)</td>
<td>0.22</td>
<td>0.30</td>
<td>0.38</td>
</tr>
<tr>
<td>HF power (ms)²</td>
<td>22.1</td>
<td>4191.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Total power (ms)²</td>
<td>14846.2</td>
<td>4895.9</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Based on 24 hour recordings, SDNN < 50 unhealthy, 50-100 compromised, > 100 healthy – however these values cannot be directly compared to short-term recordings

RSA: Respiration and Oscillations in Cardiac Output

The above analogy breaks down when applied to breathing, however, because the passive work of the bellows is due to the assist of gravity when it **descends**; in breathing the diaphragm does passive work when it **ascends** due to relaxation of the diaphragm muscle.
Increasing the depth of respiration promotes venous return through changes in right atrial (chest cavity) pressure. During inspiration, the chest wall expands as the diaphragm descends, causing right atrial pressure to fall which facilitates venous return. As pressure falls and venous return flow rises, cardiac rate accelerates… During expiration, the opposite occurs. Increasing right atrial pressure impedes venous return and slows HR… Increasing the depth of ventilation increases the range of HR over the respiratory cycle.

RSA: Respiration and Oscillations in Cardiac Output-III
(Intra-thoracic Pressure, Venous Return)

- RSA is elicited by cardiovascular reflexes during normal respiration caused by pressure changes on venous filling of the heart
- Respiratory activity influences venous return to the heart. Inspiration expands the right atrium, lowers intra-pleural pressure, enhances venous return, increases HR
- Increasing the depth of inhalation promotes venous return (like pulling out on a bellows or syringe), enhances cardiac output, and increases HR
 - Cardiac output = stroke volume x HR
- Changes in venous filling affect low pressure atrial baroreceptors at veno-atrial junctions of the heart (‘cardio-pulmonary receptors’) which are innervated by myelinated vagal afferents and respond to atrial filling and contraction. On inhalation, right atrial expansion and reduced pressure increase venous return, blood volume stretch receptor discharge, and HR via activation of sympathetic outflow and withdrawal of vagal parasympathetic activity to the SA node (‘Bainbridge’ or ‘Atrial Reflex’). On exhalation, right atrial contraction and increased pressure decrease stretch receptor discharge, venous return, and HR via sympathetic reduction and (re-)activation of vagal reflex.
RSA: Respiration and Vagal Parasympathetic Tone-I

- Normal Respiration produces rhythm of cardiac acceleration and deceleration
 - Cardiac acceleration on inhalation
 - Cardiac deceleration on exhalation
- Synchronization of respiratory and cardiovascular processes and regulation of gas (O_2, CO_2) and energy exchange
- Vagal tone is measured by HR responses to cholinergic and adrenergic stimulation and blockade

Respiration

| Ach, NE | Rate, depth, etc. | RSA
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HR or IBI</td>
<td>HRV</td>
</tr>
</tbody>
</table>

Vagal tone

RSA: Respiration and Vagal Tone-II

- RSA magnitude is affected by respiration and vagal tone separately
- Vagal tone reflects oscillations of cardiac vagally modulated parasympathetic (cholinergic) effects upon the sinoatrial node and, therefore, HR
- Respiratory parameters (e.g. rate, volume or depth) affect or confound the function linking RSA and vagal tone
- RSA due to respiration rate and cardiac vagal tone can dissociate
- RSA magnitude more closely related to changes in respiratory parameters than to changes in cardiac vagal tone
- Greater tidal volume, lower breath rate increase RSA with constant vagal tone
- HR max-min is sensitive to respiration rate independent of vagal tone
- HF power changes may not be accompanied by changes in HR
- HF power and RSA do not represent vagal tone
- RSA magnitude is affected by vagal tone and beta-adrenergic status
 - Vagolytic agents (e.g. atropine, muscarinic cholinergic antagonists) block Ach and increase beta-2 adrenergic activity
 - Decrease RSA, increase HR, no BP change
 - Abolish LF and HF power
 - Blocks SA Ach released by vagus
 - Does not alter HR in absence of vagal nerve activity
 - Beta-adrenergic blockade (e.g. propranolol, atenolol)
 - Increase RSA, decrease HR and BP

Resonance Frequency Breathing (RFB)

- HRV is related to frequency of respiratory cycle
- At ~ 6 breaths/minute =10 seconds per breath=0.1 Hz
 - 0.1 cycles/second
 - 1 cycle/10 seconds
 - 6 cycles/60 seconds
 - 6 cycles/minute
- Respiration and HRV synchronize @RFB
 - ‘Resonance’
 - Indicator of ‘Coherence’

0º phase relationship between oscillations in respiratory and HR cycles

When HRV and respiration are synchronized, a spectral peak occurs at the RFB, ~0.1 Hz, due to resonance of HRV amplitude.
Resonance is the tendency of a system to oscillate with greater amplitude at some frequencies than at others. Relative maximum frequency of oscillation is the system’s **resonance frequency**. At these resonance frequency, even small periodic driving forces can produce large amplitude oscillations.

Pushing a person in a swing is an example of resonance. Pushing a swing in time with its resonant frequency will make the swing go higher and higher (maximum amplitude), while attempts to push it at a faster or slower tempo results in smaller arcs.

Breathing ~0.1Hz caused highest HR oscillation amplitude for all Ss
- HR always synchronized with breathing at this frequency (phase=0°).
- Peak HR amplitudes at ~0.1 Hz (resonance in CVS) at this frequency.
- Peak HR amplitude found in range of 0.075–0.108 Hz (=4.5–6.5 BrPM)

Coherence of Cardiac Rhythm: Effect of RFB on HRV
coherence.com (Richard Brown, MD and Stephen Elliott, Ph.D.)

- 30 BrPM (0.5 Hz), HRV(avg) = 2
- 7.5 BrPM (0.125 Hz), HRV(avg) = 11
- 5.5 BrPM (0.092 Hz), HRV(avg) = 34

The difference between the max and min HR for each cycle is shown along the center; averaging across consecutive cycles yields HRV(avg). **RFB →** one of the many measures of HRV.
Respiration, HR, and BP are interrelated

BP: Sys/Dias, Pulse, Mean Arterial
1. The Valsalva Maneuver
 - The Valsalva Maneuver
 - Real-time blood pressure and heart rate responses to deep breathing provide autonomic information
 - RSA and Valsalva maneuver share a BP and HR linking mechanism
 - In a normal Valsalva maneuver, BP and HR both normalize. In autonomic failure, HR remains high and BP stays low
 - Quantified by the Expiratory/inspiratory (E/I) or Valsalva ratio = Longest R-R interval (phase IV) / Shortest R-R interval (phase II)
 - E/I ratio reflects PNS afferent (baro-receptor) and PNS and SNS efferent (parasympathetic and sympathetic) relation
 - E/I > 1.20 is normal, < 1.20 is abnormal
 - Procedure for the Valsalva Maneuver
 1. While continuously recording BP and HR:
 2. Take a deep breath, pinch your nose, and keep your mouth closed.
 3. Try to exhale moderately forcefully for 10 to 15 seconds, as if inflating a balloon.
 4. Gently release after about 15 seconds and breathe normally
 5. Produces 4 stages of HR and BP changes

2. Traube-Hering and Mayer Waves
3. Baroreceptor Reflex (BR)
 a. HR goes down when blood pressure goes up, and HR goes up when blood pressure goes down
 b. The baroreflex amplifies HR oscillations at resonance frequency
 c. HRV Resonance @RFB \rightarrow Coherence
 d. Includes complex relationship with vasomotor tone (VT)

The Valsalva Maneuver
- Real-time blood pressure and heart rate responses to deep breathing provide autonomic information
- RSA and Valsalva maneuver share a BP and HR linking mechanism
- In a normal Valsalva maneuver, BP and HR both normalize. In autonomic failure, HR remains high and BP stays low
- Quantified by the Expiratory/inspiratory (E/I) or Valsalva ratio = Longest R-R interval (phase IV) / Shortest R-R interval (phase II)
 - E/I ratio reflects PNS afferent (baro-receptor) and PNS and SNS efferent (parasympathetic and sympathetic) relation
 - E/I > 1.20 is normal, < 1.20 is abnormal
- Procedure for the Valsalva Maneuver
 1. While continuously recording BP and HR:
 2. Take a deep breath, pinch your nose, and keep your mouth closed.
 3. Try to exhale moderately forcefully for 10 to 15 seconds, as if inflating a balloon.
 4. Gently release after about 15 seconds and breathe normally
 5. Produces 4 stages of HR and BP changes

Respiration, HR, and BP are interrelated

BP: Sys/Dias, Pulse, Mean Arterial
1. The Valsalva Maneuver
2. Traube-Hering and Mayer Waves
3. Baroreceptor Reflex (BR)
 a. HR goes down when blood pressure goes up, and HR goes up when blood pressure goes down
 b. The baroreflex amplifies HR oscillations at resonance frequency
 c. HRV Resonance @RFB \rightarrow Coherence
 d. Includes complex relationship with vasomotor tone (VT)
HR and BP: Traube-Hering and Mayer Waves

- Named for Ludwig Traube, Karl Konstantin Hering, and Siegmund Mayer
- Rhythmic variations in blood pressure with a frequency varying from 6 to 10 cycles per minute (0.10 to 0.16 Hz)
- Related to variations in vasomotor tone
- Discovered in 1865 by Traube
- Confirmed in 1869 by Hering

Mayer

- Oscillations similar to Taube-Hering waves observed in 1876 by Mayer
- Thought they might be a separate entity than Taube-Hering
- Frequency ~0.1 Hz (10-second waves), correlated with HRV
- Due to oscillating sympathetic vasomotor tone (VT) of arterial blood vessels
- Waves in arterial blood pressure brought about by oscillations in baroreceptor and chemoreceptor reflex control systems.
- Vasodilation due to action on alpha adrenergic receptors
- Abolished or attenuated by blockade of alpha-adrenergic receptors Seen both in ECG and continuous blood pressure
- Arterial blood pressure linear frequency coupling with SNS
- Low frequency and non-synchronous with ventilatory pattern
- Frequency does not depend on gender, age or posture
- Shift to lower frequency may be associated with risk of hypertension

How does it work? BR mediates BP changes in response to HR changes via pressure receptors in the aortic arch and carotid arteries. These arterial baroreceptors increase discharge rate when stretched by BP elevation caused by increased HR. This signal (through CNIX from carotid and CNX from aorta) goes to the cardiovascular control center in medulla which then decreases vasomotor SNS and dilates vessels and increases cardiac vagal PNS, so that HR decreases. When BP falls, BR lower discharge leads to vasomotor SNS increase and vessel constriction, cardiac SNS increase and PNS withdrawal, and results in HR acceleration.

Resonance of HRV due to BR at RFB

At RFB (0.07-0.11 Hz, and corresponding to Mayer waves), the BR-mediated BP oscillatory period is 180° out of phase with HR oscillations. HR oscillations are thus amplified at resonant frequency. Maximal BP is reached after ~5 second delay from the previous cycle of BR-mediated BP increase and therefore occurs at the same time that HR reaches a minimum, which lowers HR even further; conversely, minimal BP occurs as HR reaches maximum and increases HR even more.

Via CN IX (from baroreceptors in carotid sinus) and CN X (from baroreceptors in aortic arch)

~5 sec time delay in BR produces arterial pressure oscillation resonance with HRV

@RFB → BR + 5 second delay → BP 180° out of phase with HR; → Coherence resonance of HRV;

Baroreceptor Reflex (BR)

Resonance of HRV due to BR at RFB

At RFB (0.07-0.11 Hz, and corresponding to Mayer waves), the BR-mediated BP oscillatory period is 180° out of phase with HR oscillations. HR oscillations are thus amplified at resonant frequency. Maximal BP is reached after ~5 second delay from the previous cycle of BR-mediated BP increase and therefore occurs at the same time that HR reaches a minimum, which lowers HR even further; conversely, minimal BP occurs as HR reaches maximum and increases HR even more.

~ 5 sec time delay in BR produces arterial pressure oscillation resonance with HRV

@RFB → BR + 5 second delay → BP 180° out of phase with HR; → Coherence resonance of HRV;
10/19/2018

Baroreceptor reflex (BR)
- Respiration changes HR
- HR changes BR
- BR changes BP to maintain homeostasis
- @ RFB, HR amplitude resonates with Respiration and BP
 - Fixed time delay ~5 sec in BR produces 0.1 Hz arterial pressure oscillation that resonates HR amplitude at 0.1 Hz
 - RFB synchronizes respiration, HR, BR, BP
- BR also important in 0.03 Hz VT oscillations
 - Complex relationship between HR and 0.03 Hz VT oscillations
 - Includes SNS influences

‘Coherence’
- Uncertainty whether Mayer waves are independent of BR
 - ?Central oscillator?
 - ?Additive to resonance?

Schematic Model of HR, Baroreflex, BP, and Vascular Tone Systems Based on Vaschillo and Lehrer

Triggered by respiration @ 0.1 Hz, BR links HR and BP via CNS, produces HRV resonance, and maintains BP homeostasis. 0.03 Hz oscillations of VT also influence HR and BR.
Summary: RSA and BR at RFB work together to produce Coherent HRV

1. RSA
 - Relatively small amplitude HR oscillations
 - Frequency range of normal respiration
 - ~10-24 breaths/minute = 0.17Hz-0.40Hz
 - HR accelerates on inspiration (SNS)
 - Returns to resting HR on exhalation (PNS)
 - Oscillations of cardiac output
 - Affects intra-thoracic pressure and venous return → HR
 - Smaller BP oscillations (Traube–Hering waves?)
 - Hypertension reduces RSA and vagal tone

2. BR
 - BP changes in response to HR for homeostasis (Mayer waves?)
 - RFB synchronizes respiration, HR, BR, BP → Coherence
 - Larger amplitude HR oscillations than RSA
 - Can be very large
 - Frequency range of ~4.2-7.5 breaths/minute (~0.07-0.12 Hz),
 - Increases max and min (peak to trough) of HR in normal respiration cycle
 - Average HR may not change
 - Important in complex 0.03 Hz VT oscillations
 - HRVB reduces BP

Attaining Coherence: HRV Biofeedback

The heart rhythm pattern shown in the top graph is characterized by its erratic, irregular pattern (incoherence), and associated with irregular breathing and negative emotions such as anger or frustration. The bottom graph shows a coherent heart rhythm pattern, observed when an individual is experiencing RFB and sustained, modulated positive emotions such as gratitude or happiness.
Three components of Autonomic Self-Regulation a

1. HRV Biofeedback = resonant frequency breathing
2. Mindful attention
3. Positive emotional state

ASR coaching essential elements

- Paced breathing at resonant frequency and the production of HRV Coherence through HRV Biofeedback
- Mindfulness or imagery focused on breathing and the heart. Focused attention on air entering and exiting the chest
- Positive emotional state (PES). Occupy the mind during the HRV8 session with thoughts of compassion (including self-compassion), gratitude, appreciation, etc.
HRV Power Spectrum

Peak Power at 0.099 Hz = 960 ms²/Hz ; Total LF Power = 2344.4 ms²/Hz

Calculation of McCrty's Coherence Ratio (CR) from the HRV Power Spectrum

1. Find the highest peak within the range of 0.04-0.4 Hz.
2. Peak Power: Integral of the window 0.015 Hz above and below the highest peak
3. Total Power: 0.0055-0.4 Hz
4. Coherence Ratio: Peak Power / (Total Power - Peak Power)

Figure 3: A typical heart rate variability (HRV) recording over a 15-minute period during resting conditions in a healthy individual.

0.30 Hz = 20 BrPM

Find highest peak within the range of 0.07 - 0.40 Hz (= eHFp)

- Find eHF Peak Power: Integral of the window 0.015 Hz above and below the highest peak (= eHFpp)
- Determine Total Power (TP) in the spectrum, 0.0033 - 0.4 Hz
- Calculate the Parasympathetic Ratio (PR) as: eHFpp / (TP - eHFpp)

Beyond Coherence?

HRV(B) Case Data

Dorn VA Medical Center
Columbia, SC

PTSD 2 Pre-

Peaks

<table>
<thead>
<tr>
<th>Peak (0.04-0.26 Hz)</th>
<th>Peak Power</th>
<th>Total Power</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26</td>
<td>153.2</td>
<td>656.5</td>
<td>0.23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak (0.07-0.40 Hz)</th>
<th>Peak Power</th>
<th>Total Power</th>
<th>PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.26</td>
<td>153.2</td>
<td>656.5</td>
<td>0.23</td>
</tr>
</tbody>
</table>
Time-Domain Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean HR</td>
<td>bpm</td>
<td>71</td>
</tr>
<tr>
<td>Max HR</td>
<td>bpm</td>
<td>79</td>
</tr>
<tr>
<td>Min HR</td>
<td>bpm</td>
<td>44</td>
</tr>
<tr>
<td>Max HR</td>
<td>bpm</td>
<td>79</td>
</tr>
<tr>
<td>Min HR</td>
<td>bpm</td>
<td>44</td>
</tr>
<tr>
<td>Max HR</td>
<td>bpm</td>
<td>79</td>
</tr>
<tr>
<td>Min HR</td>
<td>bpm</td>
<td>44</td>
</tr>
<tr>
<td>Max HR</td>
<td>bpm</td>
<td>79</td>
</tr>
<tr>
<td>Min HR</td>
<td>bpm</td>
<td>44</td>
</tr>
</tbody>
</table>

Frequency-Domain Results (FFT spectrum)

<table>
<thead>
<tr>
<th>Peak [0.04-0.26 Hz]</th>
<th>Peak Power</th>
<th>Total Power</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>1769.8</td>
<td>2229.3</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Frequency-Domain Results (FFT spectrum)

<table>
<thead>
<tr>
<th>Peak [0.07-0.40 Hz]</th>
<th>Peak Power</th>
<th>Total Power</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09</td>
<td>1769.8</td>
<td>2229.3</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Keywords
- eHFpp > LFpp
- RMSSD > SDNN
- +11
- +17.3
- -4.2
- +1812
- -214
- +1572
- 4x
What are the predictive utilities of the CR vs PR?

Ginsberg, J., Arave, J., Muni, P., Fogo, W., Nagpal, M., Malphrus, R., ... Gleichauf, K (2018) HRV Mediates Sensitized Chronic Pain Symptom Cluster (poster presentation at The Association of Applied Psychophysiology and Biofeedback. 49th Annual Scientific Meeting. April 13, Orlando, FL)

Summary: Empirical keys of HRV profiles

LFpp>eHFpp: excessive SNS (PR<0.4)
eHFpp>LFpp and RMSSD>SDNN: excessive SNS with PNS (PR le ~0.4)
eHFpp>LFpp and SDNN>RMSDD: PNS dominant (PR gt ~0.4)

PR and CR are useful for comparing intra-individual change
Number of veterans screened or prescreened: 220
Number of veterans enrolled: 30
Number of veterans completed: 27

Symptom Cluster Assessment
- **STRESS**
 - Perceived Stress Scale (PSS)
- **DEPRESSION**
 - Beck Depression Inventory–II (BDI-II)
- **FATIGUE**
 - Multidimensional Fatigue Inventory (MFI)
- **PAIN**
 - Brief Pain Inventory (BPI)
- **SLEEP**
 - Insomnia Symptom Questionnaire
- **CATASTROPHIZING**
 - Pain Catastrophizing Scale (PCS)
- **COGNITION**
 - Psychomotor Vigilance Test (PVT)
 - Paced Auditory Serial Addition Test (PASAT)

CR vs PR after HRVB in a Sample of Veterans with Chronic Pain

<table>
<thead>
<tr>
<th></th>
<th>Pre-</th>
<th>Post-</th>
<th>TP2 PR-TP2 PR (SE)</th>
<th>TP2 CR-TP1 CR1 (SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>26</td>
<td>22</td>
<td>0.53 (0.23)</td>
<td>0.62 (0.22)</td>
</tr>
<tr>
<td>Sham</td>
<td>29</td>
<td>19</td>
<td>0.06 (0.03)</td>
<td>0.05 (0.05)</td>
</tr>
</tbody>
</table>

*p< .005; ns

Predictive Strength of CR vs PR

Active HRVB Group

<table>
<thead>
<tr>
<th></th>
<th>GT</th>
<th>GT</th>
<th>ND</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rho (Diff PR with Diff Outcome) vs Rho (Diff CR with Diff Outcome)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4% change in variance cutoff</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>ND</th>
<th>ND</th>
<th>ND</th>
<th>ND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minutes weekly practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minutes HM coherence</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PV1 Reaction Time</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced Motivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>List Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beck Depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GT=Greater Than; ND=No Difference
Readings on RSA: Respiration and Vagal Tone

Readings on Traube-Herring and Mayer Waves

Mayer waves are oscillations of arterial pressure occurring spontaneously in conscious subjects at a frequency lower than respiration (~0.1 Hz in humans). Mayer waves are tightly coupled with synchronous oscillations of efferent sympathetic nervous activity and are almost invariably enhanced during states of sympathetic activation. For this reason, the amplitude of these oscillations has been proposed as a surrogate measure of sympathetic activity, although in the absence of a clear knowledge of their underlying physiology. Some studies have suggested that Mayer waves result from the activity of an endogenous oscillator located either in the brainstem or in the spinal cord. Other studies, mainly based on the effects of sino-aortic baroreceptor denervation, have challenged this view. Several models of dynamic arterial pressure control have been developed to predict Mayer waves. In these models, it was anticipated that the numerous dynamic components and fixed time delays present in the baroreflex loop would result in the production of a resonant, self-sustained oscillation of arterial pressure. Recent analysis of the various transfer functions of the rat baroreceptor reflex suggests that Mayer waves are transient oscillatory responses to hemodynamic perturbations rather than true feedback oscillations. Within this frame, the amplitude of Mayer waves would be determined both by the strength of the triggering perturbations and the sensitivity of the sympathetic component of the baroreceptor reflex.

Blood pressure (BP) and heart rate (HR) are continually varying. The nervous mechanisms behind this variability have been studied extensively in non-human animal models (for reviews, see Eckberg & Sleight, 1992). Since the 1980s, the combined availability of non-invasive blood pressure measurement by the Finapres, and more and more powerful computers in the laboratory, have revived research into prevalence and physiological meaning of this variability in humans. When Fourier analysis was applied to analysis of BP variability (BPV) and HR variability (HRV), two frequency peaks stood out: one around the respiratory frequency and one around 0.1 Hz, or one oscillation in 10 s. These frequencies had been observed in blood pressure recordings before, actually over 130 years ago: Traube-Hering waves (coupled to respiration) and Mayer waves, the 0.1 Hz and slower oscillations. In the earlier research it had been established that oscillating sympathetic activity causes the Mayer waves in blood pressure. The respiration-coupled blood pressure oscillations were partly explained by mechanical effects of respiration and possibly by the vagally induced heart period oscillations coupled to respiration, known as respiratory sinus arrhythmia (RSA) (Eckberg & Sleight, 1992).

Respiration is a powerful modulator of heart rate variability, and of baro- and chemoreflex sensitivity. Abnormal respiratory modulation of heart rate is often an early sign of autonomic dysfunction in a number of diseases. In addition, increase in venous return due to respiration may help in maintaining blood pressure during standing in critical situations. This review examines the possibility that manipulation of breathing pattern may provide beneficial effects in terms not only of ventilatory efficiency, but also of cardiovascular and respiratory control in physiologic and pathologic conditions, such as chronic heart failure. This opens a new area of future research in the better management of patients with cardiovascular autonomic dysfunction.

Readings on Baroreflex, RFB and Coherence

